We took a quick look at Blocks in the Quickstart. Let's dive deeper. This guide will cover the how Blocks are structured, event listeners and their types, running events continuously, updating configurations, and using dictionaries vs lists.
Take a look at the demo below.
import gradio as gr
def greet(name):
return "Hello " + name + "!"
with gr.Blocks() as demo:
name = gr.Textbox(label="Name")
output = gr.Textbox(label="Output Box")
greet_btn = gr.Button("Greet")
greet_btn.click(fn=greet, inputs=name, outputs=output)
demo.launch()
with gr.Blocks() as demo:
clause. The Blocks app code will be contained within this clause.Interface
. However, instead of being passed to some constructor, Components are automatically added to the Blocks as they are created within the with
clause.click()
event listener. Event listeners define the data flow within the app. In the example above, the listener ties the two Textboxes together. The Textbox name
acts as the input and Textbox output
acts as the output to the greet
method. This dataflow is triggered when the Button greet_btn
is clicked. Like an Interface, an event listener can take multiple inputs or outputs.In the example above, you'll notice that you are able to edit Textbox name
, but not Textbox output
. This is because any Component that acts as an input to an event listener is made interactive. However, since Textbox output
acts only as an output, it is not interactive. You can directly configure the interactivity of a Component with the interactive=
keyword argument.
output = gr.Textbox(label="Output", interactive=True)
Take a look at the demo below:
import gradio as gr
def welcome(name):
return f"Welcome to Gradio, {name}!"
with gr.Blocks() as demo:
gr.Markdown(
"""
# Hello World!
Start typing below to see the output.
""")
inp = gr.Textbox(placeholder="What is your name?")
out = gr.Textbox()
inp.change(welcome, inp, out)
demo.launch()
Instead of being triggered by a click, the welcome
function is triggered by typing in the Textbox inp
. This is due to the change()
event listener. Different Components support different event listeners. For example, the Video
Component supports a play()
event listener, triggered when a user presses play. See the Docs for the event listeners for each Component.
You can run events on a fixed schedule using the every
parameter of the event listener. This will run the event
every
number of seconds while the client connection is open. If the connection is closed, the event will stop running after the following iteration.
Note that this does not take into account the runtime of the event itself. So a function
with a 1 second runtime running with every=5
, would actually run every 6 seconds.
Here is an example of a sine curve that updates every second!
import math
import gradio as gr
import plotly.express as px
import numpy as np
plot_end = 2 * math.pi
def get_plot(period=1):
global plot_end
x = np.arange(plot_end - 2 * math.pi, plot_end, 0.02)
y = np.sin(2*math.pi*period * x)
fig = px.line(x=x, y=y)
plot_end += 2 * math.pi
if plot_end > 1000:
plot_end = 2 * math.pi
return fig
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
gr.Markdown("Change the value of the slider to automatically update the plot")
period = gr.Slider(label="Period of plot", value=1, minimum=0, maximum=10, step=1)
plot = gr.Plot(label="Plot (updates every half second)")
dep = demo.load(get_plot, None, plot, every=1)
period.change(get_plot, period, plot, every=1, cancels=[dep])
if __name__ == "__main__":
demo.queue().launch()
A Blocks app is not limited to a single data flow the way Interfaces are. Take a look at the demo below:
import gradio as gr
def increase(num):
return num + 1
with gr.Blocks() as demo:
a = gr.Number(label="a")
b = gr.Number(label="b")
btoa = gr.Button("a > b")
atob = gr.Button("b > a")
atob.click(increase, a, b)
btoa.click(increase, b, a)
demo.launch()
Note that num1
can act as input to num2
, and also vice-versa! As your apps get more complex, you will have many data flows connecting various Components.
Here's an example of a "multi-step" demo, where the output of one model (a speech-to-text model) gets fed into the next model (a sentiment classifier).
from transformers import pipeline
import gradio as gr
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
classifier = pipeline("text-classification")
def speech_to_text(speech):
text = asr(speech)["text"]
return text
def text_to_sentiment(text):
return classifier(text)[0]["label"]
demo = gr.Blocks()
with demo:
audio_file = gr.Audio(type="filepath")
text = gr.Textbox()
label = gr.Label()
b1 = gr.Button("Recognize Speech")
b2 = gr.Button("Classify Sentiment")
b1.click(speech_to_text, inputs=audio_file, outputs=text)
b2.click(text_to_sentiment, inputs=text, outputs=label)
demo.launch()
The event listeners you've seen so far have a single input component. If you'd like to have multiple input components pass data to the function, you have two options on how the function can accept input component values:
Let's see an example of each:
import gradio as gr
with gr.Blocks() as demo:
a = gr.Number(label="a")
b = gr.Number(label="b")
with gr.Row():
add_btn = gr.Button("Add")
sub_btn = gr.Button("Subtract")
c = gr.Number(label="sum")
def add(num1, num2):
return num1 + num2
add_btn.click(add, inputs=[a, b], outputs=c)
def sub(data):
return data[a] - data[b]
sub_btn.click(sub, inputs={a, b}, outputs=c)
demo.launch()
Both add()
and sub()
take a
and b
as inputs. However, the syntax is different between these listeners.
add_btn
listener, we pass the inputs as a list. The function add()
takes each of these inputs as arguments. The value of a
maps to the argument num1
, and the value of b
maps to the argument num2
.sub_btn
listener, we pass the inputs as a set (note the curly brackets!). The function sub()
takes a single dictionary argument data
, where the keys are the input components, and the values are the values of those components.It is a matter of preference which syntax you prefer! For functions with many input components, option 2 may be easier to manage.
Similarly, you may return values for multiple output components either as:
Let's first see an example of (1), where we set the values of two output components by returning two values:
with gr.Blocks() as demo:
food_box = gr.Number(value=10, label="Food Count")
status_box = gr.Textbox()
def eat(food):
if food > 0:
return food - 1, "full"
else:
return 0, "hungry"
gr.Button("EAT").click(
fn=eat,
inputs=food_box,
outputs=[food_box, status_box]
)
Above, each return statement returns two values corresponding to food_box
and status_box
, respectively.
Instead of returning a list of values corresponding to each output component in order, you can also return a dictionary, with the key corresponding to the output component and the value as the new value. This also allows you to skip updating some output components.
with gr.Blocks() as demo:
food_box = gr.Number(value=10, label="Food Count")
status_box = gr.Textbox()
def eat(food):
if food > 0:
return {food_box: food - 1, status_box: "full"}
else:
return {status_box: "hungry"}
gr.Button("EAT").click(
fn=eat,
inputs=food_box,
outputs=[food_box, status_box]
)
Notice how when there is no food, we only update the status_box
element. We skipped updating the food_box
component.
Dictionary returns are helpful when an event listener affects many components on return, or conditionally affects outputs and not others.
Keep in mind that with dictionary returns, we still need to specify the possible outputs in the event listener.
The return value of an event listener function is usually the updated value of the corresponding output Component. Sometimes we want to update the configuration of the Component as well, such as the visibility. In this case, we return a gr.update()
object instead of just the update Component value.
import gradio as gr
def change_textbox(choice):
if choice == "short":
return gr.update(lines=2, visible=True, value="Short story: ")
elif choice == "long":
return gr.update(lines=8, visible=True, value="Long story...")
else:
return gr.update(visible=False)
with gr.Blocks() as demo:
radio = gr.Radio(
["short", "long", "none"], label="Essay Length to Write?"
)
text = gr.Textbox(lines=2, interactive=True)
radio.change(fn=change_textbox, inputs=radio, outputs=text)
demo.launch()
See how we can configure the Textbox itself through the gr.update()
method. The value=
argument can still be used to update the value along with Component configuration.