Introducing Gradio 5.0
Read MoreIntroducing Gradio 5.0
Read MoreSo far, we've always assumed that in order to build an Gradio demo, you need both inputs and outputs. But this isn't always the case for machine learning demos: for example, unconditional image generation models don't take any input but produce an image as the output.
It turns out that the gradio.Interface
class can actually handle 4 different kinds of demos:
Depending on the kind of demo, the user interface (UI) looks slightly different:
Let's see how to build each kind of demo using the Interface
class, along with examples:
To create a demo that has both the input and the output components, you simply need to set the values of the inputs
and outputs
parameter in Interface()
. Here's an example demo of a simple image filter:
import numpy as np
import gradio as gr
def sepia(input_img):
sepia_filter = np.array([
[0.393, 0.769, 0.189],
[0.349, 0.686, 0.168],
[0.272, 0.534, 0.131]
])
sepia_img = input_img.dot(sepia_filter.T)
sepia_img /= sepia_img.max()
return sepia_img
demo = gr.Interface(sepia, gr.Image(), "image")
demo.launch()
What about demos that only contain outputs? In order to build such a demo, you simply set the value of the inputs
parameter in Interface()
to None
. Here's an example demo of a mock image generation model:
import time
import gradio as gr
def fake_gan():
time.sleep(1)
images = [
"https://images.unsplash.com/photo-1507003211169-0a1dd7228f2d?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=387&q=80",
"https://images.unsplash.com/photo-1554151228-14d9def656e4?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=386&q=80",
"https://images.unsplash.com/photo-1542909168-82c3e7fdca5c?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxzZWFyY2h8MXx8aHVtYW4lMjBmYWNlfGVufDB8fDB8fA%3D%3D&w=1000&q=80",
]
return images
demo = gr.Interface(
fn=fake_gan,
inputs=None,
outputs=gr.Gallery(label="Generated Images", columns=[2]),
title="FD-GAN",
description="This is a fake demo of a GAN. In reality, the images are randomly chosen from Unsplash.",
)
demo.launch()
Similarly, to create a demo that only contains inputs, set the value of outputs
parameter in Interface()
to be None
. Here's an example demo that saves any uploaded image to disk:
import random
import string
import gradio as gr
def save_image_random_name(image):
random_string = ''.join(random.choices(string.ascii_letters, k=20)) + '.png'
image.save(random_string)
print(f"Saved image to {random_string}!")
demo = gr.Interface(
fn=save_image_random_name,
inputs=gr.Image(type="pil"),
outputs=None,
)
demo.launch()
A demo that has a single component as both the input and the output. It can simply be created by setting the values of the inputs
and outputs
parameter as the same component. Here's an example demo of a text generation model:
import gradio as gr
from transformers import pipeline
generator = pipeline('text-generation', model = 'gpt2')
def generate_text(text_prompt):
response = generator(text_prompt, max_length = 30, num_return_sequences=5)
return response[0]['generated_text']
textbox = gr.Textbox()
demo = gr.Interface(generate_text, textbox, textbox)
demo.launch()
It may be the case that none of the 4 cases fulfill your exact needs. In this case, you need to use the gr.Blocks()
approach!